
How does a HashMap work in JAVA
 

Most JAVA developers are using Maps and especially HashMaps. A HashMap is a
simple yet powerful way to store and get data. But how many developers know
how a HashMap works internally? A few days ago, I’ve read a huge part of the
source code of  java.util.HashMap (in Java 7 then Java 8)  in order to have a
deep understanding of this fundamental data structure. In this post, I’ll explain
the  implementation  of  java.util.HashMap,  present  what’s  new in  the  JAVA 8
implementation and talk about performance, memory and known issues when
using HashMaps.

 

Internal storage
The JAVA HashMap class implements the interface Map<K,V>. The main methods
of this interface are:

V put(K key, V value)
V get(Object key)
V remove(Object key)
Boolean containsKey(Object key)

HashMaps use an inner class  to store data: the Entry<K, V>. This entry is a
simple key-value pair with two extra data:

a  reference  to  another  Entry  so  that  a  HashMap  can  store  entries
like singly linked lists
a hash value that represents the hash value of the key. This hash value is
stored to avoid the computation of the hash every time the HashMap
needs it.

Here is a part of the Entry implementation in JAVA 7:
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A HashMap stores data into multiple singly linked lists of entries (also called
buckets or bins). All the lists are registered in an array of Entry (Entry<K,V>[]
array) and the default capacity of this inner array is 16.

 

 The following picture shows the inner storage of a HashMap instance with an
array of nullable entries. Each Entry can link to another Entry to form a linked
list.

 

All the keys with the same hash value are put in the same linked list (bucket).
Keys with different hash values can end-up in the same bucket.

When a user calls put(K key, V value) or get(Object key), the function computes
the index of the bucket in which the Entry should be. Then, the function iterates
through the list to look for the Entry that has the same key (using the equals()
function of the key).

In the case of the get(), the function returns the value associated with the entry (if
the entry exists).

In the case of the put(K key, V value), if the entry exists the function replaces it
with the new value otherwise it creates a new entry (from the key and value in
arguments) at the head of the singly linked list.

 

This index of the bucket (linked list) is generated in 3 steps by the map:

It first gets the hashcode of the key.
It rehashes the hashcode to prevent against a bad hashing function from
the key that would put all data in the same index (bucket) of the inner
array
It takes the rehashed hash hashcode and bit-masks it with the length
(minus 1) of the array. This operation assures that the index can’t be
greater than the size of the array. You can see it as a very computationally
optimized modulo function.

http://coding-geek.com/wp-content/uploads/2015/03/internal_storage_java_hashmap.jpg


Here is the JAVA 7 and 8 source code that deals with the index:

In order to work efficiently, the size of the inner array needs to be a power of 2,
let’s see why.

Imagine the array size is 17, the mask value is going to be 16 (size -1). The binary
representation  of  16  is  0…010000,  so  for  any  hash  value  H  the  index
generated with the bitwise formula “H AND 16” is going to be either 16 or 0. This
means that the array of size 17 will only be used for 2 buckets: the one at index 0
and the one at index 16, not very efficient…

But, if you now take a size that is a power of 2 like 16, the bitwise index formula is
“H AND 15”. The binary representation of 15 is 0…001111 so the index formula
can output values from 0 to 15 and the array of size 16 is fully used. For example:

if  H  =  952  ,  its  binary  representation  is  0..01110111000,  the
associated index is 0…01000 = 8
if  H  =  1576  its  binary  representation  is  0..011000101000,  the
associated index is  0…01000 = 8
i f  H  =  1 2 3 5 6 1 4 6 ,  i t s  b i n a r y  r e p r e s e n t a t i o n  i s
0..0101111001000101000110010, the associated index is 0…00010 = 2
if  H  =  59843,  its  binary  representation  is  0..01110100111000011,
the associated index is 0…00011 = 3

 

This is why the array size is a power of two. This mechanism is transparent for the
developer: if he chooses a HashMap with a size of 37, the Map will automatically
choose the next power of 2 after 37 (64) for the size of its inner array.

 

Auto resizing
After  getting  the  index,  the  function  (get,  put  or  remove)  visits/iterates  the
associated linked list to see if there is an existing Entry for the given key. Without
modification,  this  mechanism  could  lead  to  performance  issues  because  the
function needs to iterate through the entire list to see if the entry exists. Imagine



that the size of the inner array is the default value (16) and you need to store 2
millions values. In the best case scenario, each linked list will have a size of
125 000 entries (2/16 millions). So, each get(), remove() and put() will lead to
125 000 iterations/operations. To avoid this case, the HashMap has the ability to
increase its inner array in order to keep very short linked lists.

When you create a HashMap, you can specify an initial size and a loadFactor with
the following constructor:

If you don’t specify arguments, the default initialCapacity is 16 and the default
loadFactor is 0.75. The initialCapacity represents to the size of the inner array of
linked lists.

Each time you add a new key/value in your Map with put(…), the function checks
if it needs to increase the capacity of the inner array. In order to do that, the map
stores 2 data:

The size of the map: it represents the number of entries in the HashMap.
This value is updated each time an Entry is added or removed.
A threshold: it’s equal to (capacity of the inner array) * loadFactor and it
is refreshed after each resize of the inner array

Before adding the new Entry, put(…) checks if size > threshold and if it the case it
recreates a new array with a doubled size. Since the size of the new array has
changed, the indexing function (which returns the bitwise operation “hash(key)
AND (sizeOfArray-1)”) changes. So, the resizing of the array creates twice more
buckets  (i.e.  linked  lists)  and  redistributes  all  the  existing  entries  into
the buckets (the old ones and the newly created).

This aim of this resize operation is to decrease the size of the linked lists so that
the  time  cost  of  put(),  remove()  and  get()  methods  stays  low.  All
entries whose keys have the same hash will stay in the same bucket after the
resizing. But, 2 entries with different hash keys that were in the same bucket
before might not be in the same bucket after the transformation.

The picture shows a representation before and after the resizing of the inner
array. Before the increase, in order to get Entry E, the map had to iterate through
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a list  of  5  elements.  After  the resizing,  the same get()  just  iterates  through
a linked list of 2 elements, the get() is 2 times faster after the resizing !

 

Note: the HashMap only increases the size of the inner array, it doesn’t provide a
way to decrease it.

 

Thread Safety
If you already know HashMaps, you know that is not threads safe, but why? For
example imagine that you have a Writer thread that puts only new data into the
Map and a Reader thread that reads data from the Map, why shouldn’t it work?

Because during the auto-resizing mechanism, if a thread tries to put or get an
object, the map might use the old index value and won’t find the new bucket in
which the entry is.

The worst case scenario is when 2 threads put a data at the same time and the 2
put() calls resize the Map at the same time. Since both threads modify the linked
lists at the same time, the Map might end up with an inner-loop in one of its
linked lists. If you tries to get a data in the list with an inner loop, the get() will
never end.

The HashTable implementation is a thread safe implementation that prevents
from this  situation.  But,  since  all  the  CRUD methods  are  synchronized  this
implementation is very slow. For example, if thread 1 calls get(key1), thread 2
calls get(key2) and thread 3 calls get(key3), only one thread at a time will be able
to get its value whereas the 3 of them could access the data at the same time.

A smarter implementation of a thread safe HashMap exists since JAVA 5: the
ConcurrentHashMap. Only the buckets are synchronized so multiples threads
can get(), remove() or put() data at the same time if it doesn’t imply accessing the
same bucket or resizing the inner array. It’s better to use this implementation
in a multithreaded application.



 

Key immutability
Why Strings  and Integers  are  a  good implementation of  keys  for  HashMap?
Mostly  because they are immutable!  If  you choose to create your own Key
class and don’t make it immutable, you might lose data inside the HashMap.

Look at the following use case:

You have a key that has an inner value “1”
You put an object in the HashMap with this key
The HashMap generates a hash from the hashcode of the Key (so from
“1”)
The Map  stores this hash in the newly created Entry
You modify the inner value of the key to “2”
The hash value of the key is modified but the HashMap doesn’t know it
(because the old hash value is stored)
You try to get your object with your modified key
The map computes the new hash of your key (so from “2”) to find in which
linked list (bucket) the entry is

Case 1: Since you modified your key, the map tries to find the
entry in the wrong bucket and doesn’t find it
 Case 2: Luckily, the modified key generates the same bucket as
the old key. The map then iterates through the linked list to find
the entry with the same key. But to find the key, the map first
compares  the  hash  values  and  then  calls  the  equals()
comparison. Since your modified key doesn’t have the same hash
as the old hash value (stored in the entry), the map won’t find the
entry in the linked-list.

Here is a concrete example in Java. I put 2 key-value pairs in my Map, I modify
the first key and then try to get the 2 values. Only the second value is returned
from the map, the first value is “lost” in the HashMap:

The output is: “test1= null test2=test 2”. As expected, the Map wasn’t able to
retrieve the string 1 with the modified key 1.



 

JAVA 8 improvements
The inner representation of the HashMap has changed a lot in JAVA 8. Indeed, the
implementation in JAVA 7 takes 1k lines of code whereas the implementation in
JAVA 8 takes 2k lines. Most of what I’ve said previously is true except the linked
lists of entries. In JAVA8, you still have an array but it now stores Nodes that
contains the exact same information as Entries and therefore are also linked lists:

Here is a part of the Node implementation in JAVA 8:

So what’s  the  big  difference with  JAVA 7?  Well,  Nodes  can be  extended to
TreeNodes.  A TreeNode is  a red-black tree structure that stores really  more
information so that it can add, delete or get an element in O(log(n)).

FYI, here is the exhaustive list of the data stored inside a TreeNode

Red black trees are self-balancing binary search trees. Their inner mechanisms
ensure that their length is always in log(n) despite new adds or removes of nodes.
The main advantage to use those trees is in a case where many data are in the
same index (bucket) of the inner table, the search in a tree will cost O(log(n))
whereas it would have cost O(n) with a linked list.

As you see, the tree takes really more space than the linked list (we’ll speak about
it in the next part).

By inheritance,  the inner table can contain  both Node (linked list  )  and
TreeNode (red-black tree). Oracle decided to use both data structures with the
following rules:
– If for a given index (bucket) in the inner table there are more than 8 nodes, the
linked list is transformed into a red black tree
– If for a given index (bucket) in the inner table there are less than 6 nodes, the
tree is transformed into a linked list
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This picture shows an inner array of a JAVA 8 HashMap with both trees (at bucket
0) and linked lists (at bucket 1,2 and 3). Bucket 0 is a Tree because it has more
than 8 nodes.

 

Memory overhead

JAVA 7
The use of a HashMap comes at a cost in terms of memory. In JAVA 7, a HashMap
wraps key-value pairs in Entries. An entry has:

a reference to a next entry
a precomputed hash (integer)
a reference to the key
a reference to the value

Moreover, a JAVA 7 HashMap uses an inner array of Entry. Assuming a JAVA 7
HashMap contains N elements and its inner array has a capacity CAPACITY, the
extra memory cost is approximately:

sizeOf(integer)* N + sizeOf(reference)* (3*N+C)

Where:

the size of an integer depends equals 4 bytes
the size of a reference depends on the JVM/OS/Processor but is often 4
bytes.

Which means that the overhead is often 16 * N + 4 * CAPACITY bytes

Reminder: after an auto-resizing of the Map, the  CAPACITY  of the inner array
equals the next power of two after N.

Note: Since JAVA 7, the HashMap class has a lazy init. That means that even if
you allocate a HashMap, the inner array of entry (that costs 4 * CAPACITY bytes)
won’t be allocated in memory until the first use of the put() method.



JAVA 8
With the JAVA 8 implementation, it becomes a little bit complicated to get the
memory usage because a Node can contain the same data as an Entry or the same
data plus 6 references and a Boolean (if it’s a TreeNode).

If  the all  the nodes are only Nodes, the memory consumption of the JAVA 8
HashMap is the same as the JAVA 7 HashMap.

If  the  all  the  nodes  are  TreeNodes,  the  memory  consumption  of  a  JAVA  8
HashMap becomes:

N * sizeOf(integer) + N * sizeOf(boolean) + sizeOf(reference)* (9*N+CAPACITY )

In most standards JVM, it’s equal to 44 * N + 4 * CAPACITY bytes

 

Performance issues

Skewed  HashMap  vs  well  balanced
HashMap
In the best case scenario, the get() and put() methods have a O(1) cost in time
complexity. But, if you don’t take care of the hash function of the key, you might
end up with very slow put() and get() calls. The good performance of the put() and
get depends on the repartition of the data into the different indexes of the inner
array (the buckets). If the hash function of your key is ill-designed, you’ll have a
skew repartition (no matter how big the capacity of the inner array is). All the
put() and get() that use the biggest linked lists of entry will be slow because
they’ll  need  to  iterate  the  entire  lists.  In  the  worst  case  scenario  (if  most
of  the  data  are  in  the  same  buckets),  you  could  end  up  with  a  O(n)  time
complexity.
Here is a visual example. The first picture shows a skewed HashMap and the
second picture a well balanced one.
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In the case of this skewed HashMap the get()/put() operations on the bucket 0 are
costly. Getting the Entry K will cost 6 iterations

In  the  case  of  this  well  balanced  HashMap,  getting  the  Entry  K  will  cost
3 iterations. Both HashMaps store the same amount of data and have the same
inner  array  size.  The  only  difference  is  the  hash  (of  the  key)  function  that
distributes the entries in the buckets.

Here is an extreme example in JAVA where I create a hash function that puts all
the data in the same bucket then I add 2 million elements.

On my core i5-2500k @ 3.6Ghz it takes more than 45 minutes with java 8u40 (I
stopped the process after 45 minutes).

Now, If I run the same code but this time I use the following hash function

it  takes  46 seconds,  which  is  way  better!  This  hash  function  has  a  better
repartition than the previous one so the put() calls are faster.

And If I run the same code with the following hash function that provides an even
better hash repartition

it now takes 2 seconds.

I hope you realize how important the hash function is. If a ran the same test on
JAVA 7, the results would have been worse for the first and second cases (since
the time complexity of put is O(n) in JAVA 7 vs O(log(n)) in JAVA 8)

When using a HashMap, you need to find a hash function for your keys that
spreads the keys into the most possible buckets. To do so, you need to avoid
hash collisions. The String Object is a good key because of it has good hash
function. Integers are also good because their hashcode is their own value.
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Resizing overhead
If you need to store a lot of data, you should create your HashMap with an initial
capacity close to your expected volume.

If you don’t do that, the Map will take the default size of 16 with a factorLoad of
0.75. The 11 first put() will be very fast but the 12th (16*0.75) will recreate a new
inner array (with its associated linked lists/trees) with a new capacity of 32. The
13th to 23th will be fast but the 24th (32*0.75) will recreate (again) a costly new
representation that doubles the size of  the inner array.  The internal  resizing
operation will appear at the 48th, 96th,192th, … call of put(). At low volume the
full recreation of the inner array is fast but at high volume it can takes seconds to
minutes.  By  initially  setting  your  expected  size,  you  can avoid  these  costly
operations.

But there is a drawback: if you set a very high array size like 2^28 whereas
you’re only using 2^26 buckets in your array, you will waste a lot of memory
(approximately 2^30 bytes in this case).

 

Conclusion
For simple use cases, you don’t need to know how HashMaps work since you
won’t see the difference between a O(1) and a O(n) or O(log(n)) operation. But it’s
always better to understand the underlaying mecanism of one of the most used
data structures. Moreover, for a java developer position it’s a typical interview
question.

At high volume it becomes important to know how it works and to understand the
importance of the hash function of the key.

I hope this article helped you to have a deep understanding of the HashMap
implementation.


